Skip to Main Content (Press Enter)

Logo UNIRC
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Attività
  • Competenze

UNI-FIND
Logo UNIRC

|

UNI-FIND

unirc.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Attività
  • Competenze
  1. Insegnamenti

56T047 - ANALISI MATEMATICA I

insegnamento
ID:
56T047
Durata (ore):
72
CFU:
9
SSD:
ANALISI MATEMATICA
Sede:
REGGIO DI CALABRIA
Url:
Dettaglio Insegnamento:
Ingegneria Elettronica e Biomedica/COMUNE Anno: 1
Anno:
2025
Course Catalogue:
https://unirc.coursecatalogue.cineca.it/af/2025?co...
  • Dati Generali
  • Syllabus
  • Corsi
  • Persone

Dati Generali

Periodo di attività

Primo Ciclo Semestrale (22/09/2025 - 22/12/2025)

Syllabus

Obiettivi Formativi

Scopo del corso è fornire le conoscenze di base del calcolo infinitesimale, del calcolo differenziale e integrale per funzioni reali di una variabile reale, dei numeri complessi e delle serie numeriche, necessari alle applicazioni alle materie ingegneristiche. Si forniscono, inoltre, gli strumenti necessari per impostare ed analizzare, con il metodo logico-deduttivo, un problema matematico.


Con riferimento ai Descrittori di Dublino lo studente dovrà conseguire i seguenti risultati di apprendimento:


Conoscenza e comprensione: a seguito del superamento dell’esame, lo studente conosce i principi fondamentali del calcolo infinitesimale, differenziale e integrale. Conosce le operazioni in campo complesso e le serie numeriche.


Capacità di applicare conoscenze: a seguito del superamento dell’esame, lo studente è in grado di utilizzare gli strumenti del calcolo infinitesimale, differenziale e integrale, dei numeri complessi e delle serie numeriche, anche al fine di formalizzare e risolvere problemi legati alle discipline strutturali del corso di studio.


Autonomia di giudizio:

Per il superamento dell’esame lo studente deve essere in grado di riconoscere le tecniche più elementari dell'analisi matematica e riconoscere le situazioni e i problemi in cui tali tecniche possono essere applicate.


Abilità comunicative:

per il superamento dell’esame lo studente deve essere in grado di conoscere e illustrare con un linguaggio scientifico appropriato le motivazioni teoriche, che sono alla base della procedura di calcolo scelta per l’esecuzione di un esercizio, e il ragionamento logico alla base dei teoremi fondamentali dell’Analisi Matematica.


Capacità di apprendimento: a seguito del superamento dell’esame, lo studente è in grado di di approfondire in autonomia le conoscenze acquisite e di applicare le stesse alla conoscenza di nuovi argomenti, dove l’analisi matematica viene applicata.



Prerequisiti

Conoscenze di matematica già richieste nel TOLC-I


Metodi didattici

Lezioni frontali ed esercitazioni


Verifica Apprendimento

Gli esami di accertamento e di valutazione consistono:

- in una prova scritta, volta ad accertare le capacità acquisite dallo studente nel risolvere esercizi sul calcolo infinitesimale, differenziale, integrale, sui numeri complessi e sulle serie numeriche; voto massimo 30/30;

- in una prova orale, volta ad accertare la conoscenza dei concetti di base dell’analisi matematica (definizioni, enunciati, dimostrazioni); voto massimo 30/30.

Il voto finale è la media aritmetica dei voti conseguiti nelle due prove.

Ai fine del superamento dell’esame con votazione minima di 18/30 è necessario che le conoscenze/competenze di tutti gli argomenti del programma siano almeno ad un livello elementare, sia per la parte scritta che per quella orale. E’ attribuito un voto compreso fra 20/30 e 24/30 quando lo studente sia in grado di svolgere correttamente la parte scritta ma possegga competenze elementari nella parte teorica. E’ attribuito un voto compreso fra 25/30 e 30/30 quando lo studente sia in grado di svolgere correttamente la parte scritta e dimostri buone competenze nella parte teorica. Agli studenti che abbiano acquisito competenze eccellenti sia nella parte scritta che in quella teorica può essere attribuita la lode.


Testi

C. Canuto - A.Tabacco, Analisi matematica 1, Pearson

P. Marcellini, C.Sbordone, Esercitazioni di Matematica Volume I (parte 1-parte 2), Liguori Editore.



Contenuti

I numeri e le funzioni reali.  Concetti di base di teoria degli insiemi. Nozioni di logica. Insiemi numerici: richiami sui naturali, relativi, razionali. Principio di induzione. Relazioni d'ordine. Numeri reali: ordinamento e completezza. Elementi di topologia. Concetto di funzione. Funzioni iniettive, suriettive, biunivoche. Funzione inversa, funzione composta. Funzioni elementari. Funzioni limitate, illimitate, monotone, periodiche. Estremi inferiore e superiore di funzioni. Massimi e minimi assoluti di funzioni.

Numeri complessi. Forma algebrica, forma trigonometrica e forma esponenziale di un numero complesso. Operazioni tra numeri complessi, formule di De Moivre. Radici n-esime di un numero complesso. Formule di Eulero.

Continuità di funzioni reali di variabile reale. Definizione di limite. Limite destro, Limite sinistro. Esistenza del limite. Asintoti. Algebra dei limiti. Casi di indeterminazione. Teorema di unicità del limite. Teorema della permanenza del segno. Teorema del confronto. Limiti notevoli. Limiti di funzioni monotone. Infinitesimi ed infiniti. Principio di sostituzione. Definizione di funzione continua. Punti di discontinuità e loro classificazione. Continuità della funzione composta. Teorema di Weierstrass.Teorema dei valori intermedi. Criterio di invertibilità. Teorema di esistenza degli zeri. Continuità della funzione inversa.

Calcolo differenziale per funzioni di una variabile. Definizione di derivata e significato geometrico. Punti angolosi e cuspidi. Derivate di funzioni elementari. Operazioni con le derivate. Derivabilità e continuità. Teorema di derivazione della funzione composta. Teorema di derivazione della funzione inversa e applicazioni. Derivate di ordine superiore. Massimi e minimi relativi. Punti critici. Teorema di Fermat. Teoremi di Rolle, Lagrange, Cauchy. Interpretazione geometrica e conseguenze del Teorema di Lagrange. Teorema di De L'Hôpital. Differenziale di una funzione. Concavità e convessità. Flessi. Formula di Taylor e applicazioni. Resto di Peano. Resto di Lagrange. Studio del grafico di una funzione.

Calcolo integrale. Partizione di un intervallo. Teoria dell'integrazione secondo Riemann. Integrale definito. Classi di funzioni integrabili. Funzione di Dirichlet. Somme integrali di Riemann. Proprietà dell'integrale definito ed interpretazione geometrica. Teorema della media. Teorema fondamentale del calcolo integrale. Primitive. Integrale indefinito. Metodi di integrazione. Dominio normale. Calcolo di aree di domini piani. Integrali impropri. Criteri di integrabilità.

Successioni e serie numeriche. Successioni reali. Limite di una successione. Teorema del limite delle successioni monotone. Limiti notevoli. Serie numeriche convergenti, divergenti, indeterminate. Serie geometrica, serie di Mengoli, serie armonica. Serie a termini non negativi: criterio del confronto, del rapporto, della radice. Serie assolutamente convergenti. Serie a termini di segno alterno. Teorema di Leibnitz.


Corsi

Corsi

Ingegneria Elettronica e Biomedica 
Laurea
3 anni
No Results Found

Persone

Persone

GIUFFRE' Sofia
Gruppo 01/MATH-03 - ANALISI MATEMATICA, PROBABILITÀ E STATISTICA MATEMATICA
AREA MIN. 01 - Scienze matematiche e informatiche
Settore MATH-03/A - Analisi matematica
PE1_20 - Control theory, optimisation and operational research - (2024)
PE1_11 - Theoretical aspects of partial differential equations - (2024)
Docenti di ruolo di IIa fascia
No Results Found
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.12.4.0